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A hydrodenitrogenation catalyst based on ruthe-
nium sulphide supported on HY zeolite has been
described recently [1]. The ruthenium-containing
Y-zeolite (3.33% Ru by weight on NH,Y) was
prepared by ion exchange with hexaammine ruthe-
nium(I11) tribromide, air dried (80 °C) and sulphided
by heating (350 °C in a stream of H,—H,;S or Hy—
CS,) for 3 h. The catalytic activity of the RuY cata-
lyst compared favourably with a commercial cata-
lyst in the overall conversion of quinoline as model
nitrogeneous base. To investigate the form of the
ruthenium in the sulphided RuY catalyst, its ESR
spectral properties were studied over a wide range
of temperatures, typical of its likely operating condi-
tions.

It has been shown that cation exchange of Ru-
(NH3)¢>* into the Y-zeolite takes place without
decomposition of the hexaammine complex [2].
However, decomposition of the complex takes place
on heating in oxygen to 70 K, resulting in the forma-
tion of several different ruthenium complexes so the
conditions used to prepare the catalyst require care-
ful control if a well defined chemical species is to
be formed in the zeolite. Accordingly, the ruthenium
containing Y-zeolite, prepared by ion exchange, was
air dried at room temperature and sulphided by
passing H,S through the zeolite bed (0.1 g) at room
temperature (10 ml/min) for 10 min, during which
time the colour of the solid changed from pale yellow
to a tan colour. The X-band ESR spectrum of the
sulphided material recorded at sample temperatures
of —153 °C consisted of a broad resonance centred at
g = 2. When the temperature of the zeolite was raised
to 125 °C with continued passage of hydrogen sul-
phide, the ESR spectrum shown in Fig. 1 was
obtained. This well-defined ESR spectral result
(gy=1.980; g =2.055) persisted in samples heated
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Fig. 1. ESR spectrum at —153 °C due to ruthenium(III) hexa-
ammine exchanged Y-zeolite, air dried (20 °C) and sulphided
at 125 °C. Microwave frequency 9.111 GHz.

to 350 °C, thereafter decreasing in intensity when
heating of the zeolite was continued to 400 °C. When
the initial treatment of the RuY-zeolite with hydro-
gen sulphide was carried out on a sample which had
been air dried at 80 °C, the ESR spectrum shown by
Fig. 2 was obtained, which has a central feature
similar to that of Fig. 1, flanked by a broader reso-
nance. The same ESR results were obtained with
ruthenium exchanged into both Na-Y and NH;—
Y(HY) zeolites. The passage of hydrogen (10 ml/
min) for 10 min at 350 °C caused the complete disap-
pearance of the ESR signal in both cases.

Expressions for the g-values obtained by computer
simulation of the ESR spectrum shown by Fig. 1
have been given by a number of authors [3-5].
In keeping with notation used by Wan and Lunsford
[3], we use the form derived by Wertz and Bolton
[4] but with the inclusion of an orbital reduction
factor [5] k to reflect a degree of covalency. There-
fore

g1 = g(cos?w — sin?w) — 2k sinw (1a)
& = 8.c05%w — 24/2k sin w cos w (1b)
where

tan 2w = 1—4-% 2)

The free electron value g, is taken to be 2 for pur-
poses of the present analysis. The paraemter 7 is
defined by
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Fig. 2. ESR spectrum at —153 °C due to the ruthenium(II) hexaammine exchanged Y-zeolite air dried (80 °C) and sulphided at
125 °C. Microwave frequency 9.111 GHz. The lower curve shows the computer simulation of the broader features using the para-
meters g = 2.055, &) = 1.970; ruthenium(III)—ruthenium(III) distance = 4.10 A.

n=2\3 3)

where A is the spin orbit parameter related to the one-
electron parameter ¢ [6] by

A=-(/28 4)

and & is the splitting between the d,, and the d,,,
dy, degenerate pair of levels. In this case 2S =1 for
a hole in a ‘ty;’ shell. Taking account of this, the
value for § quoted by Wan et al. [3] should be five
times larger, though in view of the fact that they have
not allowed for any orbital reduction in the value of
A used, the correction factor is probably nearer 3.
(A recent paper by Daul and Goursot [7] also cor-
rectly uses A = —¢ for ruthenium(IIL)).

If the orbital reduction factor k = 1, then i = \/§
~ —0.25 [5]. Taking A ~ —800 cm™, then § ~ 3200
cm . On the other hand, use of k = 0.7 in the equa-
tion leads ton ~ —1 and § ~ 800 cm™, a much more
reasonable value.

A possible explanation for all or part of the broad
ESR spectral features shown in Fig. 2 is that they are
due to a magnetic dipolar interaction between a pair
of neighbouring Ru(Ill) ions. The simulation shown
in Fig. 2 is a computed spectrum due to dimeric or
dinuclear species based on the computer program,
GNDIMER [8] with a Ru(III)-Ru(IIl) spacing of
about 4.1 A. This does not account for all the extra
features of Fig. 2 but provides a basis for a plausible
explanation of the observed data. A spectral compo-
nent is observed at g = 4 attributable to the AM, = +2
transition in the triplet state formed by the magnetic
dipolar interactions in the Ru(IIl) pair. Up to this
point we have taken a simple view of an axial dimeric
or dinuclear configuration.

It is concluded that a sulphido—ruthenjum(III)
species is formed at comparatively low temperatures
(above 125 °C) showing tetragonal distortion at single

jon exchange sites on the zeolite which at higher
temperatures (400 °C) show a degree of aggregation
within the supercages and undergo reduction by
hydrogen regardless of the presence or not of H,S
over the catalyst. Hence, under catalytic conditions
(with a high H,S partial pressure) the denitrogena-
tion catalyst appears to consist of a sulphido species
of ruthenjum in a low oxidation state, possibly
ruthenium(Il), in aggregated form within the zeolite
structure. If the ruthenium(IIl) hexaammine ex-
changed zeolite is subjected to quite mild heat treat-
ment, sulphiding leads to the formation of dimeric
or dinuclear ruthenium(IIl) sulphido species, which
again is reduced by hydrogen at elevated tempera-
tures. The observation of a sharp ESR spectrum due
to monomeric zeolite bound sulphido—ruthenium-
(III) allows the point at which temperature depen-
dent aggregation of single site zeolite bound sulphido
species to be observed and its disappearance in a
hydrogen atmosphere suggests that ruthenium in a
lower oxidation state forms the active catalyst.
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